Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Deepak Chopra, ${ }^{\text {a* }}$ Pritesh Dagur, ${ }^{\text {b }}$ A. S. Prakash, ${ }^{\text {a }}$<br>T. N. Guru Row ${ }^{\text {a }}$ and M. S. Hegde ${ }^{\text {a }}$

${ }^{\text {a }}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\mathbf{b}}$ Materials Research Centre, Indian Institute of Science, Bangalore 560 012, Karnataka, India

Correspondence e-mail:
deepak@sscu.iisc.ernet.in

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{N})=0.003 \AA$
$R$ factor $=0.046$
$w R$ factor $=0.118$
Data-to-parameter ratio $=12.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## Hexaaquamanganese(II) dinitrate bis(hexamethylenetetramine) tetrahydrate

In the title compound, $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the hexamethyleneteramine molecules have no direct coordination to the $\mathrm{Mn}^{\mathrm{II}}$ atom. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds form a three-dimensional network.

## Comment

Hexamethylenetetramine, a versatile ligand (Blazevic \& Kolbah, 1979) with three fused rings in a chair conformation and four bridgehead N atoms, is known to form coordination compounds with metal salts (Zheng et al., 2001). One such compound, with dichromate as the counter-ion, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]-$ $\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, has recently been reported (Dagur et al., 2003).

(I)

Fig. 1 shows the components of the asymmetric unit of the title compound, (I). The packing diagram (Fig. 2) shows both the organic molecules and the inorganic counter-ions, packed together in the crystal structure. A set of strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) links the solvent water molecules with the coordinated water molecules. There are also $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the nitrate ion and both the free and the coordinated water molecules. There also exist


The asymmetric unit of (I), with displacement ellipsoids at the $50 \%$ probability level.


Figure 2
Packing diagram of (I), viewed down the $a$ axis. The dotted lines indicate hydrogen bonds.
$\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds between the hexamethylenetetramine unit and both the coordinated and the free water molecules. These strong intermolecular hydrogen bonds form a three-dimensional network.

## Experimental

Compound (I) was prepared by mixing aqueous solutions of manganese nitrate hexahydrate and hexamethylenetetramine in a 1:2 molar ratio. A pale-pink precipitate was obtained. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an aqueous solution of the product.

## Crystal data

$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}$--
$2_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=639.51$
Monoclinic, $P 2_{1} / n$
$a=9.511$ (3) $\AA$
$b=16.232$ (4) $\AA$
$c=19.426$ (5) $\AA$
$\beta=90.600(4)^{\circ}$
$V=2998.9(14) \AA^{3}$
$Z=4$
$D_{x}=1.416 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 180 reflections
$\theta=1.6-26.4^{\circ}$
$\mu=0.52 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, pale pink
$0.42 \times 0.30 \times 0.20 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\min }=0.811, T_{\max }=0.903$
24304 measured reflections

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0529 P)^{2}\right.} \\
&+0.5875 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.118$
$S=1.06$
6539 reflections
528 parameters
All H-atom parameters refined

6539 independent reflections
4834 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.8^{\circ}$
$h=-11 \rightarrow 11$
$k=-17 \rightarrow 20$
$l=-25 \rightarrow 25$

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 2-\mathrm{H} 21 \cdots \mathrm{~N} 7^{\text {i }}$ | 0.77 (3) | 2.05 (3) | 2.808 (3) | 168 (3) |
| $\mathrm{O} 2-\mathrm{H} 22 \cdots \mathrm{O} 7^{\text {ii }}$ | 0.83 (3) | 1.97 (3) | 2.792 (3) | 173 (3) |
| $\mathrm{O} 3-\mathrm{H} 31 \cdots \mathrm{O} 16^{\mathrm{i}}$ | 0.80 (3) | 1.94 (3) | 2.730 (3) | 172 (3) |
| O4-H42 . O O | 0.77 (3) | 2.07 (3) | 2.818 (3) | 163 (3) |
| O5-H51 $\cdots$ N1 | 0.83 (3) | 1.99 (3) | 2.813 (3) | 169 (3) |
| O6-H61 $\cdots$ N $2^{\text {ii }}$ | 0.76 (3) | 2.11 (3) | 2.855 (3) | 166 (3) |
| $\mathrm{O} 6-\mathrm{H} 62 \cdots \mathrm{O} 13^{\text {ii }}$ | 0.79 (3) | 1.97 (3) | 2.753 (3) | 174 (3) |
| $\mathrm{O} 13-\mathrm{H} 131 \cdots \mathrm{~N}^{\text {iii }}$ | 0.78 (4) | 2.10 (4) | 2.868 (3) | 168 (3) |
| $\mathrm{O} 14-\mathrm{H} 142 \cdots \mathrm{O}^{\text {iv }}$ | 0.78 (4) | 2.22 (4) | 2.942 (4) | 155 (4) |
| $\mathrm{O} 15-\mathrm{H} 151 \cdots \mathrm{O} 12{ }^{\text {v }}$ | 0.84 (5) | 2.11 (5) | 2.909 (4) | 158 (4) |
| $\mathrm{O} 16-\mathrm{H} 161 \cdots \mathrm{~N} 4^{\text {vi }}$ | 0.83 (4) | 2.04 (4) | 2.854 (3) | 166 (4) |

Symmetry codes: (i) $x, 1+y, z$; (ii) $2-x, 2-y, 1-z$; (iii) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}+z$; (iv) $\frac{5}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z ;$ (v) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z ;$ (vi) $\frac{5}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.

All H atoms were located in difference maps and refined isotropically. The $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bond lengths are in the ranges 0.90 (2)1.01 (2) and 0.74 (3)-0.90 (6) Å, respectively.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRHPA-DST program.

## References

Altomare, A., Cascarano, G. L., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Blazevic, N. \& Kolbah, D. (1979). Synthesis, 14, 161-164.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dagur, P., Chopra, D., Prakash, A. S., Guru Row, T. N. \& Hedge, M. S. (2003). Acta Cryst. E59, m1129-m1130.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1997). SADABS and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Zheng, S. L., Tong, M. L., Fu, R. W., Chen, X. M. \& Ng, S. W. (2001). Inorg. Chem. 40, 3562-3569.

